翻訳と辞書 |
Berger's inequality for Einstein manifolds : ウィキペディア英語版 | Berger's inequality for Einstein manifolds In mathematics — specifically, in differential topology — Berger's inequality for Einstein manifolds is the statement that any 4-dimensional Einstein manifold (''M'', ''g'') has non-negative Euler characteristic ''χ''(''M'') ≥ 0. The inequality is named after the French mathematician Marcel Berger. ==See also==
*Hitchin–Thorpe inequality
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Berger's inequality for Einstein manifolds」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|